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Hepatocellular carcinoma (HCC) is one of the leading malignant carcinomas. Despite the advancement in the treatment for HCC,
such as precise hepatectomy, radiotherapy, transarterial therapies, chemotherapy, targeted treatments, and immunotherapy, the 5-
year overall survival rate of HCC is extremely low. Hence, novel biomarkers are urgently needed for advancing the therapy and
prognosis of HCC. Neurexophilin 4 (NXPH4) is a neuropeptide-like glycoprotein. The study is designed to investigate the
function of NXPH4 in HCC through a comprehensive bioinformatics analysis. NXPH4 expression status and prognostic values
were analyzed via multiple datasets, such as TCGA, GEO, and ICGC. The association between NXPH4 and immune cell
infiltration was estimated by TIMER, TISIDB, and CIBERSORT. In vitro, we explored the biological function of NXPH4 in
JHH7 and SNU182 cells through knocking down the expression of NXPH4 via siRNA. In general, NXPH4 was predominantly
upregulated in HCC tumors, and increased NXPH4 expression predicted unfavorable prognosis. The gene enrichment analysis
displayed that NXPH4 was related with metabolic pathways. NXPH4 expression was correlated with immune cell infiltration.
NXPH4 knockdown significantly suppressed proliferation, migration, and invasion of JHH7 and SNU182 cells. This study
suggested that the upregulation of NXPH4 is associated with adverse prognosis and immune cell infiltration in HCC. NXPH4
could be a novel biomarker of unfavorable prognosis and an underlying target for immunotherapy in HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the malignant
cancers with high morbidity and mortality. According to
global statistics, the number of newly diagnosed liver cancer
patients and liver cancer-related deaths worldwide was
905,677 and 830,180, respectively, in 2020 [1, 2]. Primary
liver cancer mainly includes HCC, intrahepatic cholangio-
carcinoma, and mixed hepatocellular carcinoma, of which
HCC accounts for more than 75% to 85% [3]. HCC patho-
genesis is correlated with certain pivotal risk factors, such
as hepatitis virus infection, alcohol abuse, and metabolic

abnormalities. Despite the advancement in the treatment
for HCC, including precise hepatectomy, radiotherapy,
transarterial therapies, chemotherapy, targeted treatments,
and immunotherapy, the 5-year overall survival rate of
HCC is extremely low [4]. The uncertainty of the molecular
mechanisms and lack of disease specific markers have dra-
matically hindered the diagnosis and therapy of HCC [5].
Therefore, novel biomarkers are urgently needed for advanc-
ing the prognosis and therapy of HCC.

Neurexophilin (NXPH) family is comprised of NXPH1/
2/3/4 members [6]. As endogenous ligands of α-neurexin in
the brain, NXPH is an important regulator of neuronal cells
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and participates in intracellular signaling transduction [7–9].
NXPH1 has been confirmed as an underlying biomarker for
invasion and metastasis in breast cancer [10]. A previous
research presented that NXPH2 expression in macrophages
was upregulated during immune system exhaustion [11].
The members of NXPH family has been reported as unfa-
vorable prognosis biomarkers in cancers, including papillary
glioneuronal tumor, leukemia, pancreatic ductal adenocarci-
noma, breast cancer, and bladder cancer [12–16]. Neurexo-
philin 4 (NXPH4) is a neuropeptide-like glycoprotein and
is widely expressed among human organs, including the
brain and liver. NXPH4 is expressed in neuronal cells and
responsible for eating, mood, balance, and movement.
NXPH4 has a similar domain structure of NXPH1 and inter-
acts with α-neurexin [17]. As a ligand for neurexin, it has the
ability to regulate synaptic inhibitory neurotransmission in
cerebellar Golgi granule cells [8]. Currently, the role of
NXPH4 in cancer has attracted attention of some researchers.
NXPH4 knockdown significantly suppressed cell proliferation
and migration of non-small-cell lung cancer [18]. Recently,
there was a study revealed that NXPH4 is an underlying indi-
cator for early diagnosis of HCC [19].

Currently, the function of NXPH4 inHCC is not available.
Therefore, we conducted an integrated bioinformatic analysis
for NXPH4 expression in HCC in multiple databases, includ-
ing The Cancer Genome Atlas (TCGA), International Cancer
Genome Consortium (ICGC), Gene Expression Omnibus
(GEO), and Tumor Immunity Estimation Resource (TIMER).
We estimated the prognostic value of NXPH4 using Kaplan-
Meier plotter database. To further understand the underlying
pathogenic mechanism of NXPH4 in HCC, we explored
NXPH4 coexpression genes via GO and KEGG pathways.
Additionally, the association between NXPH4 expression
and immune cell infiltration was estimated. Lastly, we investi-
gated biological function of NXPH4 in JHH7 and SNU182
cells through knocking down the expression of NXPH4 via

siRNA. Our study demonstrates that NXPH4 plays an essen-
tial effect on immune cell infiltration and prognosis of HCC.
Therefore, we speculate that NXPH4 could be a promising
biomarker for unfavorable prognosis and an underlying target
for immunotherapy in HCC.

2. Materials and Methods

2.1. Gene Expression and Prognostic Analysis. Firstly, we esti-
mated the expression levels of NXPH4 in 33 cancers in
TCGA dataset by TIMER database (http://timer.cistrome
.org). Next, we downloaded the transcriptional expression
and clinic data from the TCGA-LIHC. The RNA-Seq data
included 371 tumor specimens and 50 adjacent normal spec-
imens; 50 of them were matched specimens. We also chose
two different databases to sever as the validation cohorts.
The GSE64041 dataset was downloaded from GEO, which
included 60 HCC samples, 5 healthy samples, and 60 adja-
cent normal samples; 60 of them were matched samples.
The ICGC-LIRI-JP dataset was obtained from the ICGC
Data Portal, comprising 206 HCC samples and 177 adjacent
normal samples; 175 of them were matched samples. All
data were integrated via R 4.1.3. We performed the assess-
ment of NXPH4 expression in HCC and normal samples.
We compared the NXPH4 expression between different sub-
groups. These figures were visualized by the R package
“ggpubr” and “ggplot2.” We estimated the expression level
of NXPH4 on TP53 mutation status and methylation status
using UALCAN database (http://ualcan. path. uab.edu/). We
assessed the relationship between NXPH4 expression and
survival in HCC via Kaplan-Meier plotter database
(https://kmplot.com/analysis/).

2.2. Coexpressed Genes and Regulatory Networks of NXPH4.
We selected the top five coexpressed genes of NXPH4 using
cBioPortal database (https://www.cbioportal.org/). The
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Figure 1: Flow diagram of the study.
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Figure 2: Continued.
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GEPIA2 database (http://gepia2.cancer-pku.cn) was utilized
to perform the survival analysis of the top five genes in
HCC. According to GO and KEGG enrichment analyses,
we evaluated the functions and pathways associated with
the top 200 coexpression genes of NXPH4 via DAVID data-
base (https://david.ncifcrf.gov).

2.3. Immune Cell Infiltration Analysis. Based on the TCGA-
LICH cohort, we utilized CIBERSORT to calculate the rela-
tive fraction of tumor infiltrating immune cells (TIICs).
HCC specimens were grouped into high- and low-NXPH4
groups depended on median expression value of NXPH4.
The relative abundance of TIICs was compared in different
NXPH4 expression groups. We utilized TIMER database
(http://timer.cistrome.org) to perform the correlation analy-
sis between NXPH4 expression and various immune cells
and their gene markers. We used TISIDB (http://cis.hku
.hk/) to evaluate the association of NXPH4 expression levels
and immune inhibitors, chemokine, and chemokine recep-
tors in HCC.

2.4. Cell Culture and Transfection. We purchased human
HCC cell lines JHH7 and SNU182 from Meisen CTCC and
Qida (Shanghai, China), respectively. Cells were cultured in
DMEM (JHH7) with 10% fetal bovine serum (FBS, Gibco)
or RPMI-1640 (SNU182) with 10% FBS (Qida, Shanghai)
at 37°C in a 5% CO2 atmosphere. Both cell lines were certi-
fied by short tandem repeat (STR) analysis (Meisen CTCC,
Zhejiang, China). Before transfection, cells were cultured to
approximately 50% confluence in 6-well plate. We used
Lipofectamine 2000 transfection reagent (Grand Island,
NY, USA) to transfect the small interfering RNA (siRNA)
(GenePharma, Shanghai, China). After transfection with
siRNA for 48 hours, RT-PCR was performed to examine
the transfection efficiency. The sequences of siRNA were as
follows: siRNA1: 5′-UCUGUAUCUUCGUCUCUUUTT-3′
(forward) and 5′-AAAGAGACGAAGAUACAGAUG-3′

(reverse), siRNA2: 5′-UAAGACUGUAAAGGCCUAATT-
3′ (forward) and 5′-UUAGGCCUUUACAGUCUUAGG-3′
(reverse), and negative control (NC): 5′-UUCUCCGAACG
UGUCACGUTT-3′ (forward) and 5′-ACGUGACACGU
UCGGAGAATT-3′ (reverse).

2.5. RNA Extraction and Real-time Quantitative Polymerase
Chain Reaction. TRIzol was purchased from Invitrogen
(Grand Island, NY, USA) for the extraction of total RNA.
The HiScript III RT SuperMix for qPCR Kit (Vazyme) was
used to perform the reverse transcription. Thunderbird
SYBR qPCR Mix (Vazyme) was utilized to analyze real-
time quantitative polymerase chain reaction (RT-qPCR).
The β-actin was employed to control relative expression of
NXPH4. The primer sequences were as follows: NXPH4: 5′
-TGCCAAGCCCTTCAAAGTCATCTG-3′ (forward) and
5′-GTGCTCACTCTGGAAGTTATAGTCTGG-3′ (reverse)
and β-actin: 5′-CTCTTCCAGCCTTCCTTCCT-3′ (for-
ward) and 5′-AGCACTGTGTTGGCGTACAG-3′ (reverse).
The fold change in RNA expression was measured by the 2
−ΔΔCt method.

2.6. Cell Proliferation Assay. Cell Counting Kit-8 (APExBIO,
USA) assay: after interfered with siRNA for 24 h, transfected
cells were plated in 96-well plates at a density of 2 × 103
cells/well. From the first to the fifth day, the serum-free
medium of 10% CCK-8 reaction solution was used to replace
the original medium and incubated for 1 h. The light absor-
bance was quantified at 450nm (OD-450).

2.7. Cell Migration and Invasion Assays. Chambers and
Matrigel were purchased from BD Biosciences and Corning
(NY, USA), respectively. Briefly, 6 × 104 cells were plated in
the upper chambers with Matrigel coated to estimate tumor
invasion, and the chambers without Matrigel were used to
assess tumor cell migration. In a 24-well plate, the upper
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Figure 2: (a) The expression levels of NXPH4 across TCGA cancers (with tumor and normal). (b–d) Based on different datasets, unpaired
analyses showed the mRNA expression of NXPH4 in HCC and normal (adjacent) samples: (b) TCGA-LIHC; (c) GSE64041; (d) ICGC-LIRI-
JP. (e–g) Paired analysis showed the mRNA expression levels NXPH4 in HCC and normal (adjacent) samples: (e) TCGA-LIHC (n = 50); (f)
GSE64041 (n = 60); (g) ICGC-LIRI-JP (n = 175). ∗∗p < 0:01 and ∗∗∗p < 0:001.
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Figure 3: Continued.
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wells were added with 200μL serum-free medium, and the
lower wells were added with 800μL medium containing
10% FBS. The cells were incubated for 24-48 hours. At the
observation time point, the cells were cleared from the sur-
face of the upper chambers’ membrane with a cotton swab.
The invasive/migratory cells were fixed using methanol
and stained by 0.1% crystal violet. The quantity of cells
was calculated in 5 different areas under a microscope.

2.8. Statistical Analysis. R version 4.1.3 and GraphPad Prism
v9.0.2 (GraphPad software, LLC, USA) were used for all sta-
tistical analyses. Student’s t-test was employed to estimate
two group comparisons of continuous variables. Nonpara-
metric test was analyzed by Kruskal-Wallis test and Wilcox
test. Univariate and multivariate Cox analyses were utilized
to screen potential prognostic factors. The p < 0:05 was con-
sidered statistically significant.
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Figure 3: (a–h) The boxplot showed the correlation between the relative NXPH4 expression and clinicopathological parameters: (a) T stage
(Kruskal-Wallis test); (b) N stage (Wilcox test); (c) M stage (Wilcox test); (d) stage (Kruskal-Wallis Test); (e) Age (Wilcox test); (f) gender
(Wilcox test); (g) race (Wilcox test); (h) grade (Kruskal-Wallis test).
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3. Results

3.1. Transcriptional Level of NXPH4. This study was per-
formed based on the flow diagram in Figure 1. We estimated
the expression status of NXPH4 in pan-cancers using
TIMER database (Figure 2(a)). The results showed that com-
pared with normal samples, the NXPH4 expression was
obviously higher in tumor samples, including HCC, bladder
cancer, colon cancer, breast cancer, and gastric cancer. How-

ever, a significantly low expression was found in kidney
renal papillary cell carcinoma (KIRP).

Subsequently, we evaluated the mRNA expression of
NXPH4 on TCGA-LIHC cohort. The result revealed that
the NXPH4 expression was apparently higher in HCC spec-
imens (n = 371) as compared to normal specimens (n = 50)
(Figure 2(b), p < 0:001). To further clarify the result, we
chose another two independent external datasets, including
GSE64041 dataset and ICGC-LIRI-JP dataset as validation
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Figure 4: (a–d) The prognostic value of NXPH4 in HCC (Kaplan-Meier plotter): (a) over survival (OR); (b) recurrence free survival (RFS);
(c) progression free survival (PFS); (d) disease specific survival (DSS); (e) univariate analysis of NXPH4 expression and clinical parameters;
(f) multivariate analysis of NXPH4 expression and clinical parameters.
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cohorts to analyze NXPH4 expression levels in HCC
(Figures 2(c) and 2(d)). The results demonstrated that
NXPH4 expression was remarkably higher in HCC speci-
mens than normal specimens (p < 0:005). The increased
mRNA level of NXPH4 in HCC was also confirmed in
paired data analysis (Figures 2(e)–2(g)). Overall, the out-
comes of several datasets revealed that the NXPH4 expres-
sion in HCC samples was considerably higher than in
normal samples.

3.2. Correlation between the NXPH4 Expression and
Clinicopathological Characteristics. We estimated the corre-
lation between NXPH4 expression and clinicopathological
features in HCC patients. The findings showed that
increased expression of NXPH4 was related with T stage
(Figure 3(a), p = 0:00051), N stage (Figure 3(b), p = 0:045),
clinical stage (Figure 3(d), p = 4e − 04), and grade
(Figure 3(h), p = 0:0014). But the correlation between the
expression of NXPH4 and M stage is not significant
(Figure 3(c), p = 0:088). The reason might be that the com-
mon metastasis of HCC is intrahepatic metastasis rather
than distant metastasis, as well as few M1 samples (n = 3).
There is no significant correlation with age, gender, and race
groups (Figures 3(e)–3(g)). Interestingly, we found a high
level of NXPH4 in TP53-mutated HCC compared with
TP53-mild type (Supplementary: Figure S1A, p = 0:049).
Taken together, these data declared that NXPH4 might be
a crucial factor in promoting the malignancy of HCC. To
further explore the aberrant upregulated expression of
NXPH4 in HCC, we estimated the methylation status of
NXPH4 in HCC through UALCAN databases. The result
displayed that the methylation level of NXPH4 was lower
in tumor samples as compared to normal samples, but the

difference was not significant (Supplementary: Figure S1B,
p = 0:145).

3.3. Increased NXPH4 Expression Relates with Unfavorable
Prognosis in HCC Patients.We assessed the prognostic value
of NXPH4 in HCC with Kaplan-Meier plotter. The findings
demonstrated that increased NXPH4 expression was
strongly associated with adverse survival in HCC, including
overall survival (OS, Figure 4(a), p = 0:00052), recurrence
free survival (RFS, Figure 4(b), p = 0:044), progression free
survival (PFS, Figure 4(c), p = 0:0099), and disease specific
survival (DSS, Figure 4(d), p = 0:0032). Furthermore, univar-
iate analysis discovered that increased NXPH4 expression
was clearly related with unfavorable OS (HR = 2:8, 95% CI
= 1:388–5.649, p = 0:004, Figure 4(e)). The conclusion was
further confirmed by multivariate Cox regression analyses
(Figure 4(f)). These results suggested that NXPH4 was an
independent unfavorable prognostic factor in patients with
HCC.

3.4. GO and KEGG Enrichment Analyses of Coexpressed
Genes. In general, coexpressed genes have similar effects.
We utilized the cBioPortal database to screen the NXPH4
coexpressed genes in the TCGA-LIHC cohort. The top five
coexpressed genes of NXPH4 were selected by Spearman’s
correlation with an adjusted p value. The top five genes pos-
itively correlated with NXPH4 were pyruvate kinase (PKM,
r = 0:62, p = 6:12e − 38), enolase 2 (ENO2, r = 0:59, p =
1:86e − 33), solute carrier family 16 member 3 (SLC16A3, r
= 0:58, p = 4:51e − 33), suppressor APC domain containing
2 (SAPCD2, r = 0:57, p = 1:60e − 31), and pregnancy upreg-
ulated nonubiquitous CaM kinase (PNCK, r = 0:55, p =
1:74e − 29) (Figures 5(a)–5(e)). The overall survival analysis
of top five coexpression genes showed that increased
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Figure 5: (a–e) The correlation analysis of the top 5 coexpressed genes of NXPH4 (cBioPortal): (a) PKM; (b) ENO2; (c) SLC16A3; (d)
SAPCD2; (e) PNCK. (f–j) The over survival analysis of the top 5 genes in HCC (GEPIA2): (f) PKM; (g) ENO2; (h) SLC16A3; (i)
SAPCD2; (j) PNCK.
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expression of these genes was correlated with unfavorable
prognosis of HCC (Figures 5(f)–5(j)).

To identify the underlying pathogenic mechanism of
NXPH4 in HCC, we analyzed the top 200 coexpressed genes
of NXPH4 via GO and KEGG pathway analyses. The key
biological processes (BP) were nervous system development,
cell migration, brain development, and regulation of cell
proliferation (Supplementary: FigureS2A). The critical cellu-
lar components (CC) were plasma membrane, cytosol,
membrane, and integral component of plasma membrane
(Supplementary: FigureS2B). The genes coexpressed with
NXPH4 were predominant in regulating molecular functions
(MF) of protein binding, cadherin binding, calmodulin bind-
ing, and kinase activity (Supplementary: FigureS2C). As for
KEGG pathways, the main enrichment pathway was “meta-
bolic pathways” (Supplementary: FigureS2D). Overall, the
results suggested that the NXPH4 coexpressed genes were
majorly related to intracellular signaling transduction and
metabolic processes that are crucial in HCC development.

3.5. Relationship between NXPH4 Expression and Immune
Cell Infiltration in HCC. Since NXPH4 is upregulated in
HCC and closely related with unfavorable prognosis,

NXPH4 might play a prooncogenic role in HCC. It was
reported that the member of NXPH family affects the
immune system [11, 16]. We investigated whether NXPH4
plays a pathogenic role in the immunity of HCC. Firstly,
we assessed the distribution of 22 TIICs in different NXPH4
expression groups (Figure 6(a)). The findings revealed that
compared with high NXPH4 expression patients, the infil-
tration levels of B cells naïve, monocytes, resting mast cells,
NK cells, M1 macrophages, and M2 macrophages were obvi-
ously higher in patients with low NXPH4 expression. On the
contrary, the infiltration of regulatory T cells (Tregs), M0
macrophages, and resting dendritic cells was significantly
lower in HCC with low NXPH4 expression than in patients
with high NXPH4 expression.

Then, we used TIMER to estimate the association between
NXPH4 expression and infiltrating immune cells in HCC
(Figure 6(b)). NXPH4 expression was positively related with
the infiltrating levels of B cells (r = 0:307, p = 5:50e − 09),
macrophages (r = 0:27, p = 3:64e − 7), neutrophils (r = 0:226,
p = 2:20e − 05), CD4+T cells (r = 0:316, p = 1:89e − 09), and
dendritic cells (DCs, r = 0:438, p = 1:46e − 17) in HCC tissues,
while NXPH4 expression appeared to have no apparent rela-
tionship with CD8+ T cells and tumor purity (p > 0:05). Like
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Figure 6: (a) The violin graph shows the difference of immune cell in the high and low NXPH4 expression groups. (b) The correlation
between NXPH4 expression and the degree of immune cell infiltration.
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Spearman correlations between expression of NXPH4
and immune inhibitors across human cancer
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NXPH4, the top 3 positive correlation genes (PKM, ENO2,
and SLC16A3) were strongly associated with B cell, macro-
phages, CD4+T cells, DCs, and neutrophils of HCC samples
(p < 0:05) (Supplementary: Figure S3). Furthermore, we also
used TIMER to investigate the underlying association
between NXPH4 expression and TIIC gene markers in HCC
(Supplementary: TableS1). Table S1 showed that NXPH4
was obviously correlated with these gene markers, such as
CD4+ T cell, T cell (general), monocytes, neutrophils, Tregs,
and T cell exhaustion. Notably, programmed death-1 (PD-
1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), mucin
domain-containing protein-3 (TIM-3), and lymphocyte
activation gene-3 (LAG3) are the key genes participating in
T cell exhaustion and have essential effects on antitumor
immunotherapies. This research declared that NXPH4 was
positively related with four genes, including TIM-3 (r = 0:4,

p < 0:001), PD-1 (r = 0:288, p < 0:001), CTLA4 (r = 0:285,
p < 0:001), and LAG3 (r = 0:155, p < 0:01). These results
demonstrated that NXPH4 affects the development and
progression of HCC through regulating immune cell
infiltration and may be utilized as a novel immunotherapy
target.

In tumor microenvironment (TME), increased expres-
sion of inhibitory immune checkpoints and elevated immu-
nosuppressive cytokines correlated with developing and
maintaining immunosuppressive microenvironment and
promoted evasion of tumoral cells [20]. Consequently, we
assessed the correlation between NXPH4 expression and
immune inhibitors in HCC through TISIDB database. The
heat maps displayed the association between NXPH4
expression and immune inhibitors in cancers (Figure 7(a)).
The results revealed that NXPH4 expression has positive
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Figure 7: Correlation analysis between NXPH4 expression and immune inhibitors. (a) Heat map analysis of the correlation between
NXPH4 and immune inhibitors in tumors. (b–h) Immune inhibitors: NXPH4 expression in HCC is positively correlated with TGFB1,
VTCN1, LGALS9, HHLA2, PDCD1, CTLA4, and HAVCR2. Blue and red color stand for negative and positive correlations, separately.
(i) Differences in the proportions of 7 immune checkpoints in the HCC specimens in the high and low NXPH4 expression groups.
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Spearman correlations between expression of
 NXPH4 and chemokines across human cancer
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Figure 8: Continued.
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correlations with TGFB1 (rho = 0:376, p = 7:11e − 14),
VTCN1 (rho = 0:324, p = 1:77e − 10), LGALS9 (rho = 0:324
, p = 1:89e − 10), HHLA2 (rho = 0:324, p = 1:75e − 10),
PDCD1 (rho = 0:213, p = 3:49e − 05), CTLA4 (rho = 0:215,
p = 2:84e − 05), and TIM3 (HAVCR2) (rho = 0:278, p =
5:22e − 08) in HCC (Figures 7(b)–7(h)), whereas NXPH4
expression was not correlated with LAG3, programmed cell
death protein 1 ligand 2(PDCD1LG2), and T cell immunor-
eceptor with immunoglobulin and ITIM domains (TIGIT).
It is well known that PD-1 (PDCD1), CTLA4, TIM3
(HAVCR2), LAG3, PDL1 (CD274), PDCD1LG2, and TIGIT
are important inhibitory immune checkpoints related to
immune escape. Therefore, we further used TCGA-LIHC
cohort to assess the expression of these immune checkpoints
in different NXPH4 expression level groups (Figure 7(i)).
The results indicated that compared with low NXPH4

expression patients, the expression levels of PDCD1, TIGIT,
CTLA4, HAVCR2, and LAG3 were markedly higher in
patients with high NXPH4 expression. Nevertheless, the
expression of CD274 and PDCD1LG2 was e no remarkable
difference in both groups. These results demonstrated that
NXPH4 may regulate immune inhibitors to inhibit the
immune response in HCC, thereby impacting the immune
cell infiltration in TME.

Chemokines and chemokine receptors recruit immune
cell into TME and affect tumor progression [21]. We esti-
mated the relationship between the expression of NXPH4
and chemokines and chemokine receptors through TISIDB
database. These heat map results displayed that NXPH4
expression was related with chemokines and chemokine
receptors in cancers (Figures 8(a) and 8(b)). In HCC,
NXPH4 expression was negatively correlated with CCL14
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Figure 8: Correlation analysis between NXPH4 expression and chemokines and chemokines receptors. (a) Heat map analysis of the
correlation between NXPH4 and chemokines in tumors. (b) Heat map analysis of the correlation between NXPH4 and receptors in
tumors. (c–f) Chemokines: NXPH4 expression in HCC is correlated with CCL14, CCL16, CCL26, and CXCL15 (−0:3 < r < 0:3). (g)
Chemokine receptors: NXPH4 expression in HCC is correlated with CCR10 (−0:3 < r < 0:3). Blue and red color stand for negative and
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Figure 9: Continued.
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(Figure 8(c), rho = −0:409, p = 2:2e − 16) and CCL16
(Figure 8(d), rho = −0:403, p = 2:2e − 16). In addition, the
NXPH4 expression was positively associated with CCL26
(Figure 8(e), rho = 0:36, p = 9:53e − 13), CXCL5 (Figure 8(f
), rho = 0:31, p = 1:12e − 09), and CCR10 (Figure 8(g), rho
= 0:324, p = 1:86e − 10). These results demonstrated that
NXPH4 could play a significant role in tumor immunity.

3.6. Knocking Down the Expression of NXPH4 Inhibited Cell
Proliferation, Migration, and Invasion. We investigated the
biological function of NXPH4 in JHH7 and SNU182 cells
through knocking down the expression of NXPH4 via
siRNA. The RT-qPCR results showed that siRNA1 and
siRNA2 significantly decreased NXPH4 expression levels in
JHH7 and SNU182 cells as compared to the NC group
(Figures 9(a) and 9(b)). The cell proliferation assay results
revealed that NXPH4 knockdown significantly suppressed
JHH7 and SNU182 (Figures 9(c) and 9(d)) cell viability than
the NC group. Moreover, we evaluated the impact of
NXPH4 on migration and invasion of HCC cells. The Trans-
well invasion and migration assays showed that compared
with the NC group, NXPH4 knockdown dramatically inhib-
ited the number of invasive cells in JHH7 and SNU182 cells

(Figures 9(e)–9(h)). These data demonstrated that NXPH4
has a prooncogenic role in HCC.

4. Discussion

Currently, only a few research has reported the function of
NXPH4 in cancers. In the present study, we first conducted
an integrated bioinformatics analysis to investigate the
expression profiles, prognostic value, biological function,
and potential regulatory pathways of NXPH4 in HCC. These
bioinformatics analysis and basic research will lay a founda-
tion for further comprehending the prognosis and treatment
of patients with HCC. Based on bioinformatics analysis, we
discovered that expression of NXPH4 was upregulated in
HCC and related with T stage, N stage, clinical stage, grade,
and status of TP53 mutation. Furthermore, we demonstrated
that higher NXPH4 expression predicted worse survival time
in HCC, and NXPH4 could act as an independent risk factor
of HCC. These results illustrated that NXPH4 could be an
effective biomarker of unfavorable prognosis to identify
HCC with poor clinical outcomes.

For functional analyses, the construction of coexpression
pattern identified the genes coexpressed with NXPH4. The
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Figure 9: (a, b) NXPH4 mRNA was detected by quantitative RT-qPCR after 48 hours of transfection with NC siRNA or two different
siRNAs targeting NXPH4 (siRNA1 and siRNA2). (c, d) CCK8 reagents were used to assay the proliferation ability at different time
points after siRNA interference. (e, f) NXPH4 induces HCC cell (JHH7 and SNU182) migration and invasion. (g, h) The relative
percentage of cells of NXPH4-induced migration and invasion in HCC cells (JHH7 and SNU182). Transwell assay to determine cell
migration and invasion of JHH7 and SNU182 cells transfected with siRNA. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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results demonstrated that NXPH4 was positively related
with the top coexpressed genes (PKM2, ENO2, SLC16A3,
SAPCD2, and PNCK), and all these genes were associated
with poor survival of HCC. PKM, ENO2, and SLC16A3 have
been researched to have important effects on promoting
tumor progression [22–26]. Based on the GO and KEGG
pathway analyses, it was suggested that the NXPH4 coex-
pressed genes play important roles in metabolism and intra-
cellular signaling transduction. Metabolism and immune
escape are two basic characteristics of tumors. The metabolic
environment could alter the immune response in the liver,
enabling tumor cells to escape immunosurveillance.

Accumulating evidence shows that innate immune cells
(such as macrophages, DC, NK cells, MDSC, and neutro-
phils) and adaptive immune cells (including B cells and T
cells) can shape TME to promote tumor growth, metastasis,
and treatment resistance [27, 28]. This crosstalk had been
confirmed in HCC [29–32]. Based on the analyses of the
expression NXPH4 with immune cell infiltration, immune
cell gene markers, immune inhibitors, chemokines, and che-
mokine receptors, we found that the expression of NXPH4
was related with immune cell infiltration. Recently, a study
on the effect of NXPH4 in the prognosis and immune cell
infiltration of bladder cancer has been published [16]. We
found that the infiltration levels of TIICs have significant
difference in different NXPH4 expression level groups in
HCC, including NK cells, regulatory T cells (Tregs), B cells
naïve, resting mast cells, M1 macrophages, M2 macro-
phages, monocytes, resting dendritic cells, and M0 macro-
phages. However, in bladder cancer, there are only three
types of TIICs, including memory B cells, resting dendritic
cells, and M0 macrophages. Therefore, we speculated that
NXPH4 could regulate tumor immune cell infiltration, but
different tumors may have different types of immune cells.
In TME, T lymphocytes have a critical function in cell-
mediated immunity, attacking tumor cells with tumor spe-
cific antigens. Inhibitory immune checkpoints can inhibit
T cell activation and promote T cell exhaustion [33]. Our
study showed that upregulation of NXPH4 expression was
positively related with several pivotal genes, such as PDCD1,
CTLA4, LAG3, and TIM3. On the other hand, the expres-
sion of PDCD1, CTLA4, TIGIT, LAG3, and TIM3 was con-
siderably higher in the high-NXPH4 expression group than
in the low-NXPH4 expression group. The high expression
of these genes in TME was associated to the weakening of
T cell-mediated antitumoral immune responses [34].
Among these, PD1 (PDCD1) is the crucial regulator of effec-
tor T cell-mediated immune responses, which can lead to the
exhaustion of T cell by exerting a suppressive signal to T
cells with PD1 expression [35]. CTLA4 is a crucial inhibitor
of T cell proliferation and promotes the immunosuppressive
tumor microenvironment in HCC [20, 36]. Anti-PD1/PDL1
and anti-CTLA4 antibodies have been reported to be the
major immunotherapy for several types of hematologic and
solid malignancies. The measure of NXPH4 expression
levels potentially contributed to provide new management
for promoting efficient immunotherapy of HCC.

Chemokines and their receptors can regulate the direc-
tional migration of immune cells and directly or indirectly

impact tumor cell proliferation, invasiveness, and metasta-
sis [21]. The study displayed that the NXPH4 expression
was negatively related with CCL14 and CCL16. A previous
study showed that CCL14 played an essential role on the
chemotaxis of T lymphocytes, monocytes, and eosinophils
[37] and can act as a prognostic maker and tumor sup-
pressor of HCC [38]. CCL16 binds to chemokine receptors
(CCR1, CCR5, and CCR8) to activate angiogenesis in vas-
cular endothelium and is related with prognosis in breast
cancer and lung cancer [39, 40]. We speculated that the
upregulated NXPH4 expression may suppress the migra-
tion of immune cells to tumor microenvironment, which
may partially interpret how NXPH4 impact immune cell
infiltration in HCC.

Finally, we found that knockdown of NXPH4 obviously
inhibited cell proliferation, migration, and invasion ability
in HCC cells. Based on bioinformatics analysis and experi-
mental studies in vitro, we considered that NXPH4 could
be a potential prognostic biomarker for HCC and closely
associated with immune cell infiltration, cell proliferation,
migration, and invasion of HCC. These findings should be
confirmed in clinical studies and in vivo experiments.

5. Conclusion

In conclusion, the overexpression of NXPH4 was related
with unfavorable prognosis and immune cell infiltration in
HCC. Knockdown of NXPH4 inhibited proliferation, migra-
tion, and invasion ability of HCC cells. Our study contrib-
utes to better comprehend the role of NXPH4 in HCC and
provide evidence for future studies.
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